Types of Matrices
Types of Matrices:
- Square matrix: A matrix with an equal number of rows and columns.
- Rectangular matrix: A matrix with a different number of rows and columns.
- Diagonal matrix: A square matrix with all elements outside the diagonal equal to zero.
- Identity matrix: A diagonal matrix with all diagonal elements equal to one.
- Triangular matrix: A square matrix where all elements below or above the diagonal are zero.
List of Formulas to remember:
Types of Matrices:
- Row Matrix: $$[a_1, a_2, ..., a_n]$$
- Column Matrix: $$\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix}$$
- Square Matrix: $$A = [a_{ij}]_{n \times n}$$
- Diagonal Matrix: $$A = [a_{ij}] \text{ where } a_{ij} = 0 \text{ for } i \neq j$$
- Identity Matrix: $$I_n = [a_{ij}] \text{ where } a_{ij} = 1 \text{ for } i=j \text{ and } a_{ij} = 0 \text{ for } i\neq j$$
- Upper Triangular Matrix: $$A = [a_{ij}] \text{ where } a_{ij} = 0 \text{ for } i > j$$
- Lower Triangular Matrix: $$A = [a_{ij}] \text{ where } a_{ij} = 0 \text{ for } i < j$$