Types of Matrices

Types of Matrices:

  • Square matrix: A matrix with an equal number of rows and columns.
  • Rectangular matrix: A matrix with a different number of rows and columns.
  • Diagonal matrix: A square matrix with all elements outside the diagonal equal to zero.
  • Identity matrix: A diagonal matrix with all diagonal elements equal to one.
  • Triangular matrix: A square matrix where all elements below or above the diagonal are zero.
 

List of Formulas to remember:

Types of Matrices:

  • Row Matrix: $$[a_1, a_2, ..., a_n]$$

  • Column Matrix: $$\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix}$$

  • Square Matrix: $$A = [a_{ij}]_{n \times n}$$

  • Diagonal Matrix: $$A = [a_{ij}] \text{ where } a_{ij} = 0 \text{ for } i \neq j$$

  • Identity Matrix: $$I_n = [a_{ij}] \text{ where } a_{ij} = 1 \text{ for } i=j \text{ and } a_{ij} = 0 \text{ for } i\neq j$$

  • Upper Triangular Matrix: $$A = [a_{ij}] \text{ where } a_{ij} = 0 \text{ for } i > j$$

  • Lower Triangular Matrix: $$A = [a_{ij}] \text{ where } a_{ij} = 0 \text{ for } i < j$$